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Abstract 

 
We describe an approach to the problem of managing 
resources in routine decision-making tasks.  The 
central feature of this approach is the use of reusable 
RAP-like plans to generate decisions.  This allows our 
system, APEX, to take advantage of the flexibility in 
scheduling and method selection provided by execution 
mechanisms and thereby minimize or circumvent 
resource conflicts.  We then discuss an application of 
APEX for simulating a human air traffic controller in 
order to aid in the evaluation of radar display designs. 

 
 
1    Introduction 
 
In this paper, we describe an approach to managing 
resources in routine decision tasks and apply this approach 
to a practical problem.  Routine decisions are choices that 
occur regularly in an agent’s everyday tasks.  For example, 
drivers are often faced with decisions such as whether to 
slow down for a yellow light and whether to turn at an 
often-encountered intersection.  Making such decisions 
involves several resource-demanding activities including 
acquiring decision-relevant information (internally or from 
the task environment) and making inferences.  In time-
pressured conditions, or when multiple tasks compete for 
the same computational and perceptual resources, the 
ability to manage scarce resources becomes an important 
determiner of agent performance. 
 
Researchers have taken a variety of approaches to 
managing resources, especially computational resources, 
when deciding action in realistically complex, dynamic task 
environments.  One approach is to eliminate certain 
expensive computations.  Reactive planners, for example, 
use only current perceptions to conditionalize action choice, 
thus avoiding the expensive computations required to 
construct plans and retrieve items from memory.  Some 
systems avoid specific classes of inference such as the 

prediction of future states and deductive retrieval [Firby89].  
Others allow expensive operations when they are most 
likely to prove essential but otherwise avoid them 
[Chien91;Hayes-Roth95]. 
 
A second approach is to delay decisions until relevant 
information can be acquired cheaply (or at all), thus 
avoiding the computationally expensive process of 
conditionalizing decisions on a large number of possible 
future states.  Systems that employ this approach [Firby89; 
Gat96; Simmons94; Pell97] are referred to as execution 
systems since they interleave planning (deciding action) 
with plan execution.  
 
Our system’s plan execution component, like the RAP 
system [Firby89] on which it is based, combines these 
approaches but differs from previous systems in how it 
handles routine decisions.  In particular, routine decision 
tasks are treated in a uniform manner with tasks of other 
kinds — i.e. they are carried out by general-purpose task-
execution mechanisms in accordance with task-specific, 
variablized plan structures called methods. Methods consist 
of steps, each corresponding either to a primitive action or 
to some non-primitive that must be decomposed into 
substeps by selecting a more specific method. 
 
2   Decision-methods 
 
The use of specialized decision-plans has a number of 
advantages.  In particular, plan execution mechanisms can 
begin, abort, retry, interrupt, resume, specify and terminate 
decision tasks as needed to handle situational constraints 
and coordinate resource use with other tasks.   Consider, for 
example, the method below for deciding between 
alternative routes home from work.  
 
(method-25 (decide-route-from-work-to-home) 
  (step1 (acquire-info:time-of-day => ?time)  

(priority +1)) 
  (step2 (acquire-info:day-of-week => ?day)) 
  (step3 (infer rule-57 ?time ?day => ?best-route)  

(wait-for step1 step2))) 



 

In this case, the decision is based solely on whether or not 
the agent is likely to face rush hour traffic, a function of the 
time of day and day of week.  The two information 
acquisition steps are carried out in parallel, each by one of 
several methods.  For instance, day of the week information 
is acquired either by checking a calendar or querying 
memory for the current day.  When these steps complete, an 
inference rule is applied to decide the best route.  
Information acquisition tasks can fail and thus fail to 
provide a value to a decision-relevant variable— e.g. when 
no calendar can be found and no information on the current 
day can be acquired from memory.  Similarly, execution 
may omit an information-acquisition task in response to 
time-pressure or other factors.  In these cases, the 
inference-rule will rely on a default value — e.g. that today 
is a weekday.  
 
This framework provides two means for managing resource 
use in routine decision tasks.  First, execution mechanisms 
can control the timing of resource-demanding tasks by 
interruption, delaying task initiation, or delaying 
resumption.  For example, if finding a calendar would take 
perceptual resources (gaze) away from a higher priority 
task, execution mechanisms can delay this action until the 
higher priority task completes.  Second, since different 
information-acquisition methods will generally differ in 
type and amount of required resources, methods can be 
selected in order to allocate resources them most effectively.  
For instance, if finding a calendar is prevented by a higher 
priority use of the gaze resource, execution could try 
retrieving the information from memory or using the null-
method (i.e. omitting information acquisition and forcing 
reliance on a default) which requires minimal resources. 
 
Method-selection in our system is handled by method-
selection-rules (MSRs) whose syntax mirrors that of the 
COND macro in LISP.  MSRs employ both transient and 
long-term knowledge.  Relevant long-term knowledge can 
include: the expected interval during which resources must 
be allocated to a method for it to complete; the usual level 
of competition for resources from other tasks present during 
execution of the decision-task (expected workload); the 
usual amount of time available to complete the decision-
task (expected urgency); and the likelihood that the default 
value associated with an information-acquisition task will 
prove accurate.  Such factors determine the expected utility 
of alternative information acquisition methods and thus 
determine a stable preference between alternatives.  Taken 
together, the method preferences for all steps of a decision-
method constitute a baseline decision strategy. 
 
Transient information can be used to adapt a decision 
strategy to an agent’s current situation.  The current model 
supports adaptation from several kinds of information 

including especially: subjective workload and default 
counterevidence.  Subjective workload corresponds to an 
agent’s evaluation of its overall “busyness” compared to 
expected workload. During periods of unusually high 
workload for a given decision task, decision strategy is 
biased in favor of the least resource-demanding methods.  
In some cases, this will cause decisions to rely on defaults 
when more reliable information acquisition methods would 
normally be selected. 
 
Default counterevidence is knowledge that the default value 
for some decision-relevant factor is likely to prove incorrect 
for some time into the future.  For example, an agent may 
tend to assume that today is a weekday when deciding a 
route home from work.  Deciding to go into work on a 
weekend day invalidates this assumption and should 
(temporarily) reduce the system’s tendency to rely on it — 
i.e. it should bias execution mechanisms to avoid using the 
default.  This function is carried out by task-specific bias 
rules.  Since avoiding reliance on valid defaults wastes 
resources, bias rules must specify a duration, after which 
their effect expires.  The length of this interval depends on 
the expected duration of the non-default condition and the 
expected interval between successive observations of the 
condition if it persists.1 The system will thus tend to rely on 
invalid defaults when the default condition lasts for an 
unusually long time or when an unusually long period has 
passed since the condition was last observed. 
 
3   Application: user interface evaluation 
 
We have incorporated this approach to routine decision 
making into action selection mechanisms of our human 
operator model, APEX.2  The model consists primarily of 
two components: action selection mechanisms based on the 
RAP plan execution system, and a resource architecture 
which describes limitations on perceptual, cognitive, and 
motor resources and constrains action selection 
mechanisms to operate within those limits. 
 
3.1   To err is human, to prevent error is good design 

 
APEX is intended to address a fundamental problem in the 
design of user interfaces.  In particular, newly designed 
equipment and procedures often inadvertently facilitate 
human error.  Techniques for identifying error facilitations 
in design tend to be either ineffective or very expensive.  
For example, one of the most effective ways to test new 

                                                        
1 See [Freed97] for information on how the bias duration 
parameter is set. 

2 Architecture for Procedure Execution 



 

designs is to hire human operators to carry out tasks using 
prototyped equipment, and then observe their performance 
in a wide range of operating conditions.  In our domain, air 
traffic control, such tests typically require hiring highly 
paid expert controllers as subjects, often for extended 
periods.  The limited amount of testing that results from 
high cost can stifle innovation and compromise safety. 
 
One way to get some of the benefits of a "human in the 
loop" study at much lower cost is to use a computer to 
simulate all elements of such a study including the 
equipment, human operators, and experimental observers.  
Human simulation has been used successfully by others to 
guide design (e.g. [John90,Corker95]).  However, ours 
appears to be the first system to employ the powerful and 
versatile action selection mechanisms provided by AI plan 
execution systems, and thus the first able to function 
effectively in inherently complex, dynamic, and uncertain 
domains such as air traffic control.   By employing action 
selection mechanisms designed for robot control, our model 
overstates human capabilities in some ways, but can operate 
in domains where predicting human error would be most 
useful. 
 
Though not specifically designed to make errors of any 
kind, our approach to managing the resource cost of routine 
decision-making enables APEX’s plan execution 
component to help predict a type of error sometimes 
referred to as a "habit capture" [Reason90].  Habit captures 
are defined by their apparent cognitive cause.  In particular, 
people make such errors when, instead expending resources 
to acquire reliable information, they act  in accordance with 
a false but usually reliable default assumption.  Habit 
captures are reported quite frequently in naturalistic studies 
of error [Reason82].  For example:  

 
"I went to the bedroom to change in to something more 
comfortable for the evening, and the next thing I knew 
I was getting into my pajama trousers, as if to go to 
bed. 
 
"I had decided to cut down my sugar consumption and 
wanted to have my cornflakes without it.  But the next 
morning, however, I sprinkled sugar on my cereal just 
as I always do." 

 
In our view, much of people’s tendency to rely on default 
assumptions can be explained as adaptations to regularities 
in the task environment.  For instance, people will be more 
likely to rely on a default if, apriori, it is especially likely to 
be true or if the environment reliably provides default 
counterevidence when it is false.    This view provides a 
basis for predicting when people will rely on false defaults 
and make habit capture errors as a result. 

3.2   An Example 
 
At a TRACON air traffic control facility, one controller 
will often be assigned to the task of guiding planes through 
a region of airspace called an arrivals sector.  This task 
involves taking planes from various sector entry points and 
getting them lined up at a safe distance from one another 
on landing approach to a particular airport.  Some airports 
have two parallel runways.  In such cases, the controller 
will form planes up into two lines. 
 
Occasionally, a controller will be told that one of the two 
runways is closed and that all planes on approach to land 
must be directed to the remaining open runway.  A 
controller's ability to direct planes exclusively to the open 
runway depends on remembering that the other runway is 
closed.  How does the controller remember this important 
fact?  Normally, the diversion of all inbound planes to the 
open runway produces an easily perceived reminder.  In 
particular, the controller will detect only a single line of 
planes on approach to the airport, even though two lines 
(one to each runway) would normally be expected.   
 
However, problems may arise in conditions of low 
workload.  With few planes around, there is no visually 
distinct line of planes to either runway.  Thus, the usual 
situation in which both runways are available is 
perceptually indistinguishable from the case of a single 
closed runway.  The lack of perceptual support would then 
force the controller to rely on memory alone, thus 
increasing the chance that the controller will accidentally 
direct a plane to the closed runway. 
 
 3.3   Simulation 
 
When the simulated controller hears that the left runway 
is closed, interpretation mechanisms cause a propositional 
representation of this fact to be encoded in memory.  The 
encoding event generates bias (default counterevidence) 
according to the following rule: 
 
(bias-rule-17 
 (if (closed ?rwy) 
     (create-bias method-27 step5 (10 minutes)))) 
 
Newly generated bias is represented explicitly in memory 
along with a notation indicating when the bias will expire if 
not renewed.  In this case, bias lasting 10 minutes causes 
decision mechanisms to consider the possibility of runway 
closure (step5 below) in cases where the usual state — all 
runways open — might otherwise be assumed. 
 
When a plane approaches its airspace, the simulated 
controller initiates a routine plane-handling method 



 

involving accepting responsibility for the plane, 
determining where the plane is headed, and then guiding it 
to its destination.  If the plane's destination is Los Angeles 
airport (LAX), guiding it to its destination will involve 
selecting between the airport's two parallel runways.  For  
highly routine decisions such as runway selection, human 
controllers can reasonably be expected to know which 
factors to consider in making the decision and how to 
appropriately weight each factor.   This knowledge is 
incorporated into the following decision method: 
 
 
(Method-27 (select-runway ?plane) 
  (step1 (id-rwy-with-fewer-planes => ?fewer)) 
  (step2 (id-rwy-fastest-approach ?plane => 
 ?fastest)) 
  (step3 (id-rwy-easiest-for-me => ?easiest)) 
  (step4 (id-rwy-better-microclimate =>?climate)) 
  (step5 (id-available-runways => ?available))   
  (step6 (id-safest-rwy ?plane => ?safest)) 
  (step7 (infer rule-19 ?fewer ?fastest …) 
      (wait-for step1 step2 … step6))) 
 
In most cases, more than one method will be available for 
acquiring information about a factor.  In this example, the 
controller could determine runway availability by 
retrieving information from memory, asking another 
controller, or by assuming the most likely condition — 
that the runway is open.  Since runways closures are rare 
and memory retrieval is expensive [Carrier95;Stein93], 
the decision strategy underlying this method (along with 
associated MSRs) prescribes reliance on the default 
assumption unless transient bias (default counterevidence) 
promotes a more effortful alternative. 
 
In the described scenario, bias produced after learning of 
the runway closure causes the agent to temporarily avoid 
reliance on the default.  Instead, for some time thereafter, 
the runway's availability is verified by retrieving 
information from working memory whenever a runway 
selection task occurs.  Eventually, the initial bias expires.  
To select a runway for a newly arrived plane, the agent’s 
decisions will once again conform to the default 
assumption.  Other factors will then determine which 
runway is selected.  For example, the controller may 
choose to direct a heavy plane to the longer left runway 
which, in normal circumstances, would allow the plane an 
easier and safer landing.  With the left runway closed, 
actions following from this decision result in error. 
 
Avoiding error requires maintaining appropriate bias.  In 
a variation of the described scenario in which no error 
occurs, visually perceived reminders of the runway closure 
cause bias to be periodically renewed. In particular, 
whenever visual attention mechanisms attend to plane 
icons on an approach path to the airport, interpretation 

mechanisms note the absence of a line of planes to the left 
runway and signal an expectation failure. 
 
(expectation-generation-rule-5 
  (if (and 
       (not (visual-group plane-icons  
     lft-rwy-path)) 
       (visual-group plane-icons rt-rwy-path)) 
      (assert-anomaly (rwy-imbalance right)))) 
 
In general, whenever an expectation failure occurs,  a task 
to explain the observed anomaly is initiated.    The first 
step in such a task is to try to match the anomaly to a 
known explanation-pattern (XP) [Schank86].  A match 
results in a task to verify the XP hypothesis. 
 
(explanation-pattern-5  
   (:anomaly  (rwy-imbalance ?rwy)) 
   (:candidate-explanation  (closed ?rwy))) 
 
In principle, verifying a hypothesis could involve mental 
and physical actions of any kind.  In the current model 
however, the only way to verify a hypothesis is to check 
for a match in working memory.  In this case, the contents 
of working memory are adequate; the anomalous absence 
of planes on approach to the left runway is explained as a 
result of the left runway's closure.   
 
Bias renewal occurs whenever the working memory item 
that originally produced the bias is re-encoded or 
retrieved.  Thus, retrieving the proposition (closed runway 
left) triggers the bias generation rule just as if the 
proposition had been encoded for the first time.  Thus, the 
unusual arrangement of planes on the radar scope acts as a 
constant reminder, preventing the agent from reverting to 
the use of its default assumption and thereby preventing 
error. 
 
3.4   Aiding user interface design  
 
Interface designers often overlook aspects of an interface 
that facilitate user errors, though in many instances, 
design problems are obvious once pointed out 
[Norman88].  The problem of noticing these design 
problems becomes especially difficult in domains such as 
air traffic control where interfaces must mediate complex 
tasks carried out in diverse operating conditions.  By 
employing a model of error-prone human behavior, we 
hope to partially automate the process of predicting 
design-facilitated errors. 
 
The basis for these predictions arises from an analysis of 
how agents generally, and humans in particular, can 
manage limited resources in decision-making.   
Employing this analysis, it is possible not only to simulate 
the influence of interface attributes on human tendencies 



 

to err, but also to provide causal explanations for predicted 
errors that indicate ways to repair the design.  For 
example, explaining the described error scenario to a 
designer as an indirect consequence of low workload 
indicates a clever fix: runway closures can be visually 
signaled, but only in low workload conditions when the 
added screen clutter would cause little distraction. 
 

4   Discussion 
 
The process of deciding action can make substantial 
demands on limited computational and physical resources.  
To cope with time-pressure and competing demands, our 
system decides action on the basis of flexible strategies 
incorporated into RAP-like reusable plans and other 
structures.  When carried out by the same task execution 
mechanisms used to carry out non-decision tasks, these 
decision plans provide two means for managing resources. 
 
First, execution mechanisms can delay or interrupt 
decision subtasks to give higher priority tasks preferential 
access to resources. Second, execution can select between 
alternative methods for subtasks on the basis of duration 
or compatibility between their different resource 
requirements and demands from other tasks.  Selecting a 
method for its resource-demand characteristics will 
sometimes entail trading off against some other desirable 
attribute such as reliability.  In particular, execution may 
rely on a default assumption in making a decision rather 
than engage in time- and resource-demanding efforts to 
acquire more reliable information. 
 
Resource-management strategies that prescribe reliance on 
defaults make an agent vulnerable to habit-capture errors 
when assumptions underlying the strategy do not hold in 
its current environment.  In the described example, the 
strategy of assuming runway availability in the absence of 
default counterevidence makes the simulated air traffic 
controller vulnerable in conditions of low workload when 
counterevidence is unavailable.  
 
The systematicity of such errors makes our approach 
useful for predicting circumstances in which aspects of an 
interface design might inadvertently facilitate error.  By 
alerting designers to the potential for such errors early in 
the design process, we hope to reduce the cost of 
evaluation and thereby speed the safe introduction of new 
technology. 
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